Classification

Classification

Given an observation, determine one class from a set of classes that best explains the observation

Features are discrete or continuous

  • 2 category classifier
    • Dichotomiser

Argmax

Argument that gives the maximum value from a target function

Gaussian Classifier

Training

  • Each class ii has it’s own Gaussian Ni=N(mi,vi)N_i=N(m_i,v_i)
i^=argmaxi(p(otNi)P(Ni))\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)i^=argmaxi(p(otNi))\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)
  • With equal priors

Discrete Classifier

  • Each class ii has it’s own histogram HiH_i
    • Describes the probability of each observation type kk
    • P(ot=kHi)P(o_t=k|H_i), based on class-specific type counts
i^=argmaxi(P(ot=kHi))\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)
  • Nothing else known about classes
i^=argmaxi(P(ot=kHi)P(Hi))\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)
  • Given class priors P(Hi)P(H_i)
  • Maximum posterior probability
    • Bayes