Supervised Learning

Supervised Learning

Gaussian Classifier

  • qt(i)={1if class i0otherwiseq_t(i)= \begin{cases} 1 & \text{if class } i \\ 0 & \text{otherwise} \end{cases}
  • Indicator function

  • m^i=tqt(i)ottqt(i)\hat m_i=\frac{\sum_tq_t(i)o_t}{\sum_tq_t(i)}
  • v^i=tqt(i)(otm^i)2tqt(i)\hat v_i=\frac{\sum_tq_t(i)(o_t-\hat m_i)^2}{\sum_tq_t(i)}
  • Distribution weight

    • Class prior
    • P(Ni)P(N_i) c^i=1Ttqt(i)\hat c_i=\frac 1 T \sum_tq_t(i)
μ^i=t=1Tqt(i)ott=1Tqt(i)\hat \mu_i=\frac{\sum_{t=1}^Tq_t(i)o_t}{\sum_{t=1}^Tq_t(i)}^i=t=1Tqt(i)(otμi)(otμi)Tt=1Tqt(i)\hat\sum_i=\frac{\sum_{t=1}^Tq_t(i)(o_t-\mu_i)(o_t-\mu_i)^T}{\sum_{t=1}^Tq_t(i)}
  • For K-dimensional