Convolutional Layer

Design Parameters

  • Size of input image
    • 256 x 256 x 1
    • Towards top end of supportable
  • Padding
    • Thickness of border 0s
  • Kernel size
    • 7 x 7 x 1 x n
      • N is for multiple filters per layer
    • Main design decision
      • 12 x 12/15 x 15 in early layers
      • Lower in later filters
      • Dataset-dependent
  • Stride
    • Interval to sample
    • 1
      • Every subsequent pixel
      • Same size out as in
    • 2
      • Every other subsequent pixel
      • Out image is half input size
  • Size of computable output
    • 252 x 252 x 1 x n
      • Depends on padding and striding