Back Propagation

Error signal graph

mlp-arch-graph

  1. Error Signal
    • ej(n)=dj(n)yj(n)e_j(n)=d_j(n)-y_j(n)
  2. Net Internal Sum
    • vj(n)=i=0mwji(n)yi(n)v_j(n)=\sum_{i=0}^mw_{ji}(n)y_i(n)
  3. Output
    • yj(n)=φj(vj(n))y_j(n)=\varphi_j(v_j(n))
  4. Instantaneous Sum of Squared Errors
    • E(n)=12jCej2(n)\mathfrak{E}(n)=\frac 1 2 \sum_{j\in C}e_j^2(n)
    • CC = o/p layer nodes
  5. Average Squared Error
    • Eav=1Nn=1NE(n)\mathfrak E_{av}=\frac 1 N\sum_{n=1}^N\mathfrak E (n)
E(n)wji(n)=E(n)ej(n)ej(n)yj(n)yj(n)vj(n)vj(n)wji(n)\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}= \frac{\partial\mathfrak E(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \frac{\partial v_j(n)}{\partial w_{ji}(n)}

From 4

E(n)ej(n)=ej(n)\frac{\partial\mathfrak E(n)}{\partial e_j(n)}=e_j(n)

From 1

ej(n)yj(n)=1\frac{\partial e_j(n)}{\partial y_j(n)}=-1

From 3 (note prime)

yj(n)vj(n)=φj(vj(n))\frac{\partial y_j(n)}{\partial v_j(n)}=\varphi_j'(v_j(n))

From 2

vj(n)wji(n)=yi(n)\frac{\partial v_j(n)}{\partial w_{ji}(n)}=y_i(n)

Composite

E(n)wji(n)=ej(n)φj(vj(n))yi(n)\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}= -e_j(n)\cdot \varphi_j'(v_j(n))\cdot y_i(n) Δwji(n)=ηE(n)wji(n)\Delta w_{ji}(n)=-\eta\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}Δwji(n)=ηδj(n)yi(n)\Delta w_{ji}(n)=\eta\delta_j(n)y_i(n)

Gradients

Output Local

δj(n)=E(n)vj(n)\delta_j(n)=-\frac{\partial\mathfrak E (n)}{\partial v_j(n)}=E(n)ej(n)ej(n)yj(n)yj(n)vj(n)=- \frac{\partial\mathfrak E(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)}=ej(n)φj(vj(n))= e_j(n)\cdot \varphi_j'(v_j(n))

Hidden Local

δj(n)=E(n)yj(n)yj(n)vj(n)\delta_j(n)=- \frac{\partial\mathfrak E (n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)}=E(n)yj(n)φj(vj(n))=- \frac{\partial\mathfrak E (n)}{\partial y_j(n)} \cdot \varphi_j'(v_j(n))δj(n)=φj(vj(n))kδk(n)wkj(n)\delta_j(n)= \varphi_j'(v_j(n)) \cdot \sum_k \delta_k(n)\cdot w_{kj}(n)

Weight Correction

weight correction = learning rate  local gradient  input signal of neuron j\text{weight correction = learning rate $\cdot$ local gradient $\cdot$ input signal of neuron $j$}Δwji(n)=ηδj(n)yi(n)\Delta w_{ji}(n)=\eta\cdot\delta_j(n)\cdot y_i(n)
  • Looking for partial derivative of error with respect to each weight
  • 4 partial derivatives
    1. Sum of squared errors WRT error in one output node
    2. Error WRT output yy
    3. Output yy WRT Pre-activation function sum
    4. Pre-activation function sum WRT weight
      • Other weights constant, goes to zero
      • Leaves just yiy_i
    • Collect 3 boxed terms as delta jj
      • Local gradient
  • Weight correction can be too slow raw
    • Gets stuck
    • Add momentum

mlp-local-hidden-grad

  • Nodes further back
    • More complicated
    • Sum of later local gradients multiplied by backward weight (orange)
    • Multiplied by differential of activation function at node

Global Minimum

  • Much more complex error surface than least-means-squared
  • No guarantees of convergence
    • Non-linear optimisation
  • Momentum
    • +αΔwji(n1),0α<1+\alpha\Delta w_{ji}(n-1), 0\leq|\alpha|<1
    • Proportional to the change in weights last iteration
      • Can shoot past local minima if descending quickly

mlp-global-minimum

back-prop1 back-prop2

back-prop-equations

w5+=w5ηEtotalw5w^+_5=w_5-\eta\cdot\frac{\partial E_{total}}{\partial w_5}

back-prop-weight-changes