Least Mean Square
  • To handle overlapping classes
  • Linearity condition remains
    • Linear boundary
  • No hard limiter
    • Linear neuron
  • Cost function changed to error, JJ
    • Half doesn’t matter for error
      • Disappears when differentiating
E(w)=12e2(n)\mathfrak{E}(w)=\frac{1}{2}e^2(n)
  • E(w)w=e(n)e(n)w\frac{\partial\mathfrak{E}(w)}{\partial w}=e(n)\frac{\partial e(n)}{\partial w}
  • e(n)=d(n)xT(n)w(n)e(n)=d(n)-x^T(n)\cdot w(n)e(n)w(n)=x(n)\frac{\partial e(n)}{\partial w(n)}=-x(n)E(w)w(n)=x(n)e(n)\frac{\partial \mathfrak{E}(w)}{\partial w(n)}=-x(n)\cdot e(n)
  • Gradient vector

    • g=E(w)g=\nabla\mathfrak{E}(w)
    • Estimate via: g^(n)=x(n)e(n)\hat{g}(n)=-x(n)\cdot e(n) w^(n+1)=w^(n)+ηx(n)e(n)\hat{w}(n+1)=\hat{w}(n)+\eta \cdot x(n) \cdot e(n)
  • Above is a feedforward loop around weight vector, w^\hat{w}

    • Behaves like low-pass filter
      • Pass low frequency components of error signal
    • Average time constant of filtering action inversely proportional to learning-rate
      • Small value progresses algorithm slowly
        • Remembers more
        • Inverse of learning rate is measure of memory of LMS algorithm
  • w^\hat{w} because it’s an estimate of the weight vector that would result from steepest descent

    • Steepest descent follows well-defined trajectory through weight space for a given learning rate
    • LMS traces random trajectory
    • Stochastic gradient algorithm
    • Requires no knowledge of environmental statistics

Analysis

  • Convergence behaviour dependent on statistics of input vector and learning rate
    • Another way is that for a given dataset, the learning rate is critical
  • Convergence of the mean
    • E[w^(n)]w0 as nE[\hat{w}(n)]\rightarrow w_0 \text{ as } n\rightarrow \infty
    • Converges to Wiener solution
    • Not helpful
  • Convergence in the mean square
    • E[e2(n)]constant, as nE[e^2(n)]\rightarrow \text{constant, as }n\rightarrow\infty
  • Convergence in the mean square implies convergence in the mean
    • Not necessarily converse

Advantages

  • Simple
  • Model independent
    • Robust
  • Optimal in accordance with HH^\infty, minimax criterion
    • If you do not know what you are up against, plan for the worst and optimise
  • Was considered an instantaneous approximation of gradient-descent

Disadvantages

  • Slow rate of convergence
  • Sensitivity to variation in eigenstructure of input
  • Typically requires iterations of 10 x dimensionality of the input space
    • Worse with high-d input spaces slp-mse
  • Use steepest descent
  • Partial derivatives slp-steepest-descent
  • Can be solved by matrix inversion
  • Stochastic
    • Random progress
    • Will overall improve

lms-algorithm

w^(n+1)=w^(n)+ηx(n)[d(n)xT(n)w^(n)]\hat{w}(n+1)=\hat{w}(n)+\eta\cdot x(n)\cdot[d(n)-x^T(n)\cdot\hat w(n)]=[Iηx(n)xT(n)]w^(n)+ηx(n)d(n)=[I-\eta\cdot x(n)x^T(n)]\cdot\hat{w}(n)+\eta\cdot x(n)\cdot d(n)w^(n)=z1[w^(n+1)]\hat w(n)=z^{-1}[\hat w(n+1)]

Independence Theory

slp-lms-independence

sl-lms-summary