Convolution

Integral operator

  • Satisfies mathematical properties of integral operator
  • Product of two after one has been reversed and shifted
x(t)=x1(t)x2(t)=x1(tτ)x2(τ)dτx(t)=x_1(t)\circledast x_2(t)=\int_{-\infty}^\infty x_1(t-\tau)\cdot x_2(\tau)d\tau

Properties

  1. x1(t)x2(t)=x2(t)x1(t)x_1(t)\circledast x_2(t)=x_2(t)\circledast x_1(t)
    • Commutativity
  2. (x1(t)x2(t))x3(t)=x1(t)(x2(t)x3(t))(x_1(t)\circledast x_2(t))\circledast x_3(t)=x_1(t)\circledast (x_2(t)\circledast x_3(t))
    • Associativity
  3. x1(t)[x2(t)+x3(t)]=x1(t)x2(t)+x1(t)x3(t)x_1(t)\circledast [x_2(t)+x_3(t)]=x_1(t)\circledast x_2(t)+ x_1(t)\circledast x_3(t)
    • Distributivity
  4. Ax1(t)Bx2(t)=AB[x1(t)x2(t)]Ax_1(t)\circledast Bx_2(t)=AB[x_1(t)\circledast x_2(t)]
    • Associativity with Scalar
  5. Symmetrical graph about origin
  6. y(t)=x1(ta)x2(tb)y(t)=x_1(t-a)\circledast x_2(t-b)
    • x(t)=x1(t)x2(t)x(t)=x_1(t)\circledast x_2(t)
    • y(t)=x(tab)y(t)=x(t-a-b)
  7. x(t)=x1(t)x2(t)x(t)=x_1(t)\circledast x_2(t)
    • x1x_1 between a1a_1 and b1b_1
    • x2x_2 between a2a_2 and b2b_2
    • Starting point of x(t)=a1+a2x(t)=a_1+a_2
    • Ending point of x(t)=b1+b2x(t)=b_1+b_2
  8. xy=xˉyˉ\overline{x \circledast y}=\bar x \circledast \bar y
  9. (xy)=xy=xy(x \circledast y)'=x'\circledast y=x\circledast y'

Applications

  1. Communications systems
    • Shift signal in frequency domain (Frequency modulation)
  2. System analysis

Polynomial Multiplication

  • Convolving coefficients of two poly gives coefficients of product

Discrete

G[i,j]=H[u,v]F[i,j]G[i,j]=H[u,v]\circledast F[i,j]G[i,j]=u=kkv=kkH[u,v]F[iu,jv]G[i,j]=\sum^k_{u=-k}\sum^k_{v=-k} H[u,v]F[i-u,j-v]