Transfer Function
Y(s)=H(s)X(s)Y(s)=H(s)\cdot X(s)
  • H(s)=Y(s)X(s)=L{y(t)}L{x(t)}H(s)=\frac{Y(s)}{X(s)}=\frac{\mathcal L\{y(t)\}}{\mathcal L\{x(t)\}}
Y(z)=H(z)X(z)Y(z)=H(z)\cdot X(z)
  • H(z)=Y(z)X(z)=Z{y[n]}Z{x[n]}H(z)=\frac{Y(z)}{X(z)}=\frac{\mathcal Z\{y[n]\}}{\mathcal Z\{x[n]\}}
G(ω)=YX=H(jω)G(\omega)=\frac{|Y|}{|X|}=|H(j\omega)|
  • H(jω)H(j\omega), Frequency response
ϕ(ω)=arg(Y)arg(X)=arg(H(jω))\phi(\omega)=arg(Y)-arg(X)=arg\left(H\left(j\omega\right)\right)
  • ϕ(ω)\phi(\omega), Phase shift
τϕ(ω)=ϕ(ω)ω\tau_\phi(\omega)=-\frac{\phi(\omega)}{\omega}
  • τϕ\tau_\phi, Phase delay
  • Frequency-dependent amount of delay introduced to the sinusoid by HH
τg(ω)=dϕ(ω)dω\tau_g(\omega)=-\frac{d\phi(\omega)}{d\omega}
  • τg\tau_g, Group delay
  • Frequency-dependent amount of delay introduced to the envelope of the sinusoid by HH

Partial Fractions Partial Fractions for Laplace Inverse Z Transform

Discrete Time Systems:Impulse responses and convolution; An introduction to the Z-transform